Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
International Journal of Applied Pharmaceutics ; 15(Special Issue 1):51-55, 2023.
Article in English | EMBASE | ID: covidwho-20240315

ABSTRACT

Objective: To design an optimal formulation for quercetin and vitamin C nano-phytosome. Method(s): Nano-phytosomes are prepared by the thin layer hydration technique using a 2-level-5-factor design experimental. A total of 32 experimental formulas were used for data analysis. The ratio of quercetin: soy lecithin (X1), the ratio of quercetin: cholesterol (X2), stirring speed (X3), stirring temperature (X4), and stirring time (X5) were used as independent factors, while globule size as a dependent factor. Data analysis was carried out by Design Expert12 application. Characterization of the optimal formula included physicochemical evaluation, globule size analysis, zeta potential, polydispersity index, entrapment efficiency, Transition Electron Microscopy (TEM) analysis, and FTIR analysis. Result(s): The optimal formula consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol;stirring speed 763.986 rpm;stirring time of 59 min, at temperature 51.73 degreeC which produced 59.26 nm average globule size, PDI value 0.66;zeta potential value-35.93+/-0.95 mV and average SPAN value 0.61. This formulation showed entrapment efficiency of quercetin 91.69+/-0.18 % and vitamin C 90.82+/-0.13 %. The TEM and FITR analysis showed the morphological of the globules and interactions between the drugs, soy lecithin, and cholesterol to form nano-phytosomes. Conclusion(s): The conditions to obtain the optimal formula for quercetin vitamin C nano-phytosome consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol;stirring speed 763.986 rpm;stirring time of 59 min, and at temperature 51.73 degreeC.Copyright © 2023 The Authors.

2.
Yaoxue Xuebao ; 58(4):826-833, 2023.
Article in Chinese | EMBASE | ID: covidwho-20234481

ABSTRACT

Nucleic acids, as a next generation of biotechnology drugs, not only can fundamentally treat diseases, but also own significant platform characteristics in view of technology and production. Therefore, nucleic acid-based drugs have broad clinical applications in biomedical fields. However, nucleic acids are degradable and unstable, and have very low intracellular delivery efficiency in vitro and in vivo, which greatly limits their applications. In recent years, ionizable lipid-based lipid nanoparticles have shown promising application potentials and have been successfully applied to COVID-19 (Coronavirus Disease 2019) vaccines in clinic. Lipid nanoparticles demonstrate high in vivo delivery efficiency and good safety profile due to their unique structural and physicochemical properties, which provides many possibilities for their clinical applications for nucleic acid delivery in the future. This review focused on the characteristics of nucleic acid drugs and their delivery barriers, and discussed the approved nucleic acid drugs to illustrate the key aspects of the success of their delivery carrier system. In addition, problems to be solved in the field were highlighted.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

3.
Yaoxue Xuebao ; 58(4):826-833, 2023.
Article in Chinese | EMBASE | ID: covidwho-2322579

ABSTRACT

Nucleic acids, as a next generation of biotechnology drugs, not only can fundamentally treat diseases, but also own significant platform characteristics in view of technology and production. Therefore, nucleic acid-based drugs have broad clinical applications in biomedical fields. However, nucleic acids are degradable and unstable, and have very low intracellular delivery efficiency in vitro and in vivo, which greatly limits their applications. In recent years, ionizable lipid-based lipid nanoparticles have shown promising application potentials and have been successfully applied to COVID-19 (Coronavirus Disease 2019) vaccines in clinic. Lipid nanoparticles demonstrate high in vivo delivery efficiency and good safety profile due to their unique structural and physicochemical properties, which provides many possibilities for their clinical applications for nucleic acid delivery in the future. This review focused on the characteristics of nucleic acid drugs and their delivery barriers, and discussed the approved nucleic acid drugs to illustrate the key aspects of the success of their delivery carrier system. In addition, problems to be solved in the field were highlighted.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

4.
QRB Discovery ; 3:446-452, 2022.
Article in English | EMBASE | ID: covidwho-2325245

ABSTRACT

Chapter 1: COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2;as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected.Copyright ©

5.
Pharmaceutical Sciences Asia ; 50(1):9-16, 2023.
Article in English | EMBASE | ID: covidwho-2317731

ABSTRACT

The pharmacokinetic (PK) drug-drug interactions (DDIs) of nelfinavir and cepharanthine combination is limited information in human. In addition, the dosage regimen of this combination is not available for COVID-19 treatment. The objective of this study was to perform in silico simulations using GastroPlusTM software to predict physicochemical properties, PK parameters using the physiologically based pharmacokinetic (PBPK) model of healthy adults in different dosage regimens. The DDIs analysis of nelfinavir and cepharanthine combination was carried out to optimize the dosage regimens as a potential against COVID-19. The Spatial Data File (SDF) format of nelfinavir and cepharanthine structures obtained from PubChem database were used to carry out in silico predictions for physicochemical properties and PK parameters using several aspects of modules such as ADMET Predictor, Metabolism and Transporter, PBPK model. Subsequently, all data were utilized in the DDIs simulations. The dynamic simulation feature was selected to calculate and investigate the Cmax, AUC0-120, AUC0-inf, Cmax ratio, AUC0-120 ratio, and AUC0-inf ratio. The victim or nelfinavir dosage regimens were used four oral administration regimens of 500 mg and 750 mg in every 8 and 12 hours for simulations. The perpetrator or cepharanthine oral dosage regimens were used in several regimens from 10 mg to 120 mg in every 8, 12, and 24 hours. From all predicted results, the dosage regimen as a potential combination against COVID-19 was nelfinavir 500 mg every 8 hours and cepharanthine 10 mg every 12 hours.Copyright © 2023 by Faculty of Pharmacy, Mahidol University, Thailand is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit https://www.creativecommons.org/licenses/by-nc-nd/4.0/.

6.
Journal of Chemical Education ; 2023.
Article in English | Scopus | ID: covidwho-2314750

ABSTRACT

The COVID-19 pandemic illuminated challenges with assessment, especially in online environments that threaten academic integrity. In the wake of the pandemic, faculty in higher education were seeking alternative assessments that meet the assessment goal(s) of their classroom. Even though the COVID-based disruptions are diminishing, higher education continues to experience ongoing upheaval related to new technology, such as ChatGPT, requiring ongoing reevaluation of our assessment practices. Upon reflecting on our assessment goals, we explored oral exams as a potentially valuable tool in the assessment toolbox in Physical Chemistry I and II courses at two institutions. In analyzing the course evaluation data at both institutions, we found consistent themes in student-perceived challenges, student-perceived value, and instructor-perceived value. Students had an overwhelmingly positive response to the oral exam experience and recommended their continued use in spite of their perceived challenges. Students found the oral exams challenging due to the stress and anxiety of verbal presentation and the depth of understanding required to answer questions verbally. In response to these challenges, students adjusted their study habits to incorporate studying in groups, verbally speaking out loud, utilizing spaced practice methods, and focusing on understanding concepts and equations instead of relying on memorization of material. Considering the challenges and required adjustment in study habits, students still overwhelmingly recommend using oral exams because they recognize the value of communication and teamwork in their future careers. In addition to student value, the instructors found value in oral assessments, despite the challenges with time commitments, validity, reliability, and fairness. We believe oral assessments in undergraduate chemistry curricula warrant further investigation as a useful tool in the assessment toolbox. © 2023 American Chemical Society and Division of Chemical Education, Inc.

7.
Pharmaceutical Technology ; 47(1):26-29 and 35, 2023.
Article in English | EMBASE | ID: covidwho-2293103
8.
Chemosensors ; 11(4):222, 2023.
Article in English | ProQuest Central | ID: covidwho-2302712

ABSTRACT

The emergence of the SARS-CoV-2 virus and the associated pandemic has affected the entire human population. Human susceptibility to the virus has highlighted a tremendous need for affordable diagnostic systems to manage the pandemic and monitor the effectiveness of vaccination. We have developed a simple and label-free electrochemical immunosensor for the detection of human anti-SARS-CoV-2 IgG antibodies, which consists of a supporting screen-printed carbon electrode (SPCE) modified with an electrodeposited polyaniline film and glutaraldehyde, allowing effective immobilization of the SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD) as a biorecognition element. The impedimetric immunosensor showed a linear response over a wide concentration range of 0.01–10 μg mL−1, that is, 67 pM–6.7 nM, with a low detection limit of 25.9 pM. A dual working electrode configuration with a built-in negative control unit was demonstrated for practical field applications. The immunosensor was successfully used in a real serum sample from an infected patient and showed good reproducibility and fair agreement with ELISA. An optional amplification step with secondary goat anti-human IgG antibodies was demonstrated, resulting in an extended linear range and a detection limit as low as 0.93 pM.

9.
Chemosensors ; 11(4):230, 2023.
Article in English | ProQuest Central | ID: covidwho-2302293

ABSTRACT

The development of sensitive and affordable testing devices for infectious diseases is essential to preserve public health, especially in pandemic scenarios. In this work, we have developed an attractive analytical method to monitor products of genetic amplification, particularly the loop-mediated isothermal amplification reaction (RT-LAMP). The method is based on electrochemical impedance measurements and the distribution of relaxation times model, to provide the so-called time-constant-domain spectroscopy (TCDS). The proposed method is tested for the SARS-CoV-2 genome, since it has been of worldwide interest due to the COVID-19 pandemic. Particularly, once the method is calibrated, its performance is demonstrated using real wastewater samples. Moreover, we propose a simple classification algorithm based on TCDS data to discriminate among positive and negative samples. Results show how a TCDS-based method provides an alternative mechanism for label-free and automated assays, exhibiting robustness and specificity for genetic detection.

10.
Chemosensors ; 11(4):204, 2023.
Article in English | ProQuest Central | ID: covidwho-2299578

ABSTRACT

In recent research, 3D printing has become a powerful technique and has been applied in the last few years to carbon-based materials. A new generation of 3D-printed electrodes, more affordable and easier to obtain due to rapid prototyping techniques, has emerged. We propose a customizable fabrication process for flexible (and rigid) carbon-based biosensors, from biosensor design to printable conductive inks. The electrochemical biosensors were obtained on a 50 µm Kapton® (polyimide) substrate and transferred to a 500 µm PDMS substrate, using a 3D-extrusion-based printing method. The main features of our fabrication process consist of short-time customization implementation, fast small-to-medium batch production, ease of electrochemical spectroscopy measurements, and very good resolution for an extrusion-based printing method (100 µm). The sensors were designed for future integration into a smart wound dressing for wound monitoring and other biomedical applications. We increased their sensibility with electro-deposited gold nanoparticles. To assess the biosensors' functionality, we performed surface functionalization with specific anti-N-protein antibodies for SARS-CoV 2 virus, with promising preliminary results.

11.
International Journal of Pharmaceutical Quality Assurance ; 14(1):16-20, 2023.
Article in English | Scopus | ID: covidwho-2295621

ABSTRACT

Favipiravir is a potential repurpose moiety to treat COVID-19 by depletion of virus load in infectious patients. To analyze and separate Favipiravir with remarkable efficiency, X-Bridge C8 column (150 x 4.6 mm, 5 µ) and a solvent phase of 0.1% TEA and acetonitrile (40:60 v/v) with 1-mL/min flow rate were used. The eluted favipiravir and possible degradants were detected at 225 nm. Further, the process was validated by using ICH (Q2R1) guidelines to ensure the method's suitability in the pharmaceutical sector. The RT of Favipiravir was observed at 3.7 min with good linearity of 2 to 30 µg/mL. %RSD of both system and method precision was assessed in the series of 0.32 to 0.98. The mean percentage recovery of Favipiravir was in the range of 99.0–100.4%. The limit of detection (LoD) and limit of quantification (LoQ) were assessed to be 0.024 and 0.084 μg/mL for favipiravir. The outcomes confirmed that the projected approach was economical, insightful, simple and precise with better sensitivity. Investigation of Favipiravir in the incidence of a variety of stressed or forced degradation environments ensures stability indicating quality of the developed approach. © 2023, Dr. Yashwant Research Labs Pvt. Ltd.. All rights reserved.

12.
Chemosensors ; 9(3):52, 2021.
Article in English | ProQuest Central | ID: covidwho-2294877

ABSTRACT

Two inexpensive and simple methods for synthesis of carbon nanodots were applied and compared to each other, namely a hydrothermal and microwave-assisted method. The synthesized carbon nanodots were characterized using transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis), photoluminescence (PL), Fourier transform-infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The synthesized microwave carbon nanodots had smaller particle size and were thus chosen for better electrochemical performance. Therefore, they were used for our modification process. The proposed electrodes performance characteristics were evaluated according to the IUPAC guidelines, showing linear response in the concentration range 10−6–10−2, 10−7–10−2, and 10−8–10−2 M of tobramycin with a Nernstian slope of 52.60, 58.34, and 57.32 mV/decade for the bare, silver nanoparticle and carbon nanodots modified carbon paste electrodes, respectively. This developed potentiometric method was used for quantification of tobramycin in its co-formulated dosage form and spiked human plasma with good recovery percentages and without interference of the co-formulated drug loteprednol etabonate and excipients.

13.
Chemosensors ; 11(2):149, 2023.
Article in English | ProQuest Central | ID: covidwho-2267936

ABSTRACT

Conventional enzyme-based continuous glucose sensors in interstitial fluid usually rely on dissolved oxygen as the electron-transfer mediator to bring electrons from oxidase to electrode while generating hydrogen peroxide. This may lead to several problems. First, the sensor may provide biased detection results owing to fluctuation of oxygen in interstitial fluid. Second, the polymer coatings that regulate the glucose/oxygen ratio can affect the dynamic response of the sensor. Third, the glucose oxidation reaction continuously produces corrosive hydrogen peroxide, which may compromise the long-term stability of the sensor. Here, we introduce an oxygen-independent nonenzymatic glucose sensor based on water splitting-assisted electrocatalysis for continuous glucose monitoring. For the water splitting reaction (i.e., hydrogen evolution reaction), a negative pretreatment potential is applied to produce a localized alkaline condition at the surface of the working electrode for subsequent nonenzymatic electrocatalytic oxidation of glucose. The reaction process does not require the participation of oxygen;therefore, the problems caused by oxygen can be avoided. The nonenzymatic sensor exhibits acceptable sensitivity, reliability, and biocompatibility for continuous glucose monitoring in hypoxic environments, as shown by the in vitro and in vivo measurements. Therefore, we believe that it is a promising technique for continuous glucose monitoring, especially for clinically hypoxic patients.

14.
Current Traditional Medicine ; 9(3):28-43, 2023.
Article in English | EMBASE | ID: covidwho-2267482

ABSTRACT

The mass casualties caused by the delta variant and the wave of the newer "Omicron" variant of SARS-COV-2 in India have brought about great concern among healthcare officials. The government and healthcare agencies are seeking effective strategies to counter the pandemic. The application of nanotechnology and repurposing of drugs are reported as promising approaches in the management of COVID-19 disease. It has also immensely boomed the search for productive, re-liable, cost-effective, and bio-assimilable alternative solutions. Since ancient times, the traditional-ly employed Ayurvedic bhasmas have been used for diverse infectious diseases, which are now employed as nanomedicine that could be applied for managing COVID-19-related health anomalies. Like currently engineered metal nanoparticles (NPs), the bhasma nanoparticles (BNPs) are also packed with unique physicochemical properties, including multi-elemental nanocrystalline compo-sition, size, shape, dissolution, surface charge, hydrophobicity, and multi-pathway regulatory as well as modulatory effects. Because of these conformational and configurational-based physico-chemical advantages, Bhasma NPs may have promising potential to manage the COVID-19 pandemic and reduce the incidence of pneumonia-like common lung infections in children as well as age-related inflammatory diseases via immunomodulatory, anti-inflammatory, antiviral, and adju-vant-related properties.Copyright © 2023 Bentham Science Publishers.

15.
Chemosensors ; 11(2):141, 2023.
Article in English | ProQuest Central | ID: covidwho-2260894

ABSTRACT

This paper describes for the first time the surface modification of glassy carbon (GC) electrodes with bamboo-based renewable carbon (RC) and antimony nanoparticles (SbNPs) for the determination of methylparaben (MePa) in personal care products (PCPs). The synthesized RC-SbNP material was successfully characterized by scanning electron microcopy, energy-dispersive X-ray spectroscopy and cyclic voltammetry. The proposed sensor was applied in the detection of MePa using the optimized parameters by differential pulse voltammetry (DPV). The analytical range for detection of MePa was 0.2 to 9.0 µmol L−1, with limits of detection and quantification of 0.05 µmol L−1 and 0.16 µmol L−1, respectively. The determination of MePa in real PCP samples was performed using the proposed GC/RC-SbNP sensor by DPV and UV-vis spectrophotometry as comparative methodology. The use of RC-SbNP material for the development of electrochemical sensors brings a fresh approach to low-cost devices for MePa analysis.

16.
Clinical Nutrition Open Science ; 44:126-143, 2022.
Article in English | EMBASE | ID: covidwho-2258064

ABSTRACT

This review focused on compiling, summarizing, updating the information available on the colostrum and its health benefits. Colostrum is the first milk secreted by the mammary gland of female mammals immediately after birth during the first few days, and its composition differs from the mature milk. It ensures immune support for newborns in the early stages of life. It is a divine immune gift from the Creator. Mammalian colostrum contains unique components rich in nutritional macronutrients (proteins, fat, carbohydrates) and micronutrients (vitamins, minerals, antioxidants) and many bioactive substances like antimicrobial factors (Igs, LF, LP, LZ, cytokines) and growth factors (EGF, TGFalpha and beta, IGF-1 and 2, FGF, PDGF, GH), which are necessary to stimulate the immune systems that newborns need for health and survival life. Physicochemical composition changes dramatically in the first few days that distinguish it from mature milk. This reverses an essential difference in their biological function as fractional sources or for health-promotion. So it is considered one of the best natural food supplements consumed within various life stages. Colostrum is used to treat cancer, AIDS, polio, heart disease, and rheumatoid arthritis. Hyper-immune colostrum or milk collected from cows immunized by SARS-CoV-2, it can grant protection short-term from infection in humans and can be used as an alternative way to produce specific antibodies against CoVID-19 until effective excess vaccines against new mutations can be available. Likewise, colostrum and its components contribute as a non-drug alternative to the clinical management of CoVID-19. Also, lactoferrin and its supplements are effective in preventing and treating people with coronavirus infection. Therefore, due to these previous multiple functions, colostrum is considered as a natural food, called miracle immune milk, and used as a medicine.Copyright © 2022 The Author

17.
Journal of the Indian Chemical Society ; 100(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2257002

ABSTRACT

In this work, an analysis has been done to describe the molecular structure, spectroscopic, reduced density gradient, topological properties, atomic charges, Lipinski rule, Natural bond orbital analysis, docking and molecular dynamics simulation of the potent antiviral drug EIDD-2801 in the effective treatment against COVID-19. Intramolecular charge distribution is well understood by three schemes such as AIM, Mulliken and NBO analysis and non-covalent interactions have been understood through reduced density gradient. Topological properties, such as charge density and Laplacian of charge density along with the electron localization function, make it easy to obtain comprehensive information about bond strengths and critical points. The details obtained from the calculation of global reactivity descriptors and Lipinski rule are useful for understanding the nature of molecular reactivity and site selectivity. Electrostatic potentials help to identify potential electrophilic and nucleophilic sites for interaction between EIDD-2801 and target proteins. The molecular docking combined with molecular dynamic simulation studies enables us to get better picture about the ligand-protein interaction.Copyright © 2023 Indian Chemical Society

18.
Journal of Chemical Education ; 100(2):933, 2023.
Article in English | ProQuest Central | ID: covidwho-2252942

ABSTRACT

Chemistry simulations using interactive graphic user interfaces (GUIs) represent uniquely effective and safe tools to support multidimensional learning. Computer literacy and coding skills have become increasingly important in the chemical sciences. In response to both of these facts, a series of Jupyter notebooks hosted on Google Colaboratory were developed for undergraduate students enrolled in physical chemistry. These modules were developed for use during the COVID-19 pandemic when Millsaps College courses were virtual and only virtual or online laboratories could be used. These interactive exercises employ the Python programming language to explore a variety of chemical problems related to kinetics, the Maxwell–Boltzmann distribution, numerical versus analytical solutions, and real-world application of concepts. All of the modules are available for download from GitHub (https://github.com/Abravene/Python-Notebooks-for-Physical-Chemistry). Accessibility was prioritized, and students were assumed to have no prior programming experience;the notebooks are cost-free and browser-based. Students were guided to use widgets to build interactive GUIs that provide dynamic representations, immediate access to multiple investigations, and interaction with key variables. To evaluate the perceived effectiveness of this introduction to Python programming, participants were surveyed at the beginning and end of the course to gauge their interest in pursuing programming and data analysis skills and how they viewed the importance of programming and data analysis for their future careers. Student reactions were generally positive and showed increased interest in programming and its importance in their futures, so these notebooks will be incorporated into the in-person laboratory in the future.

19.
Catalysts ; 13(2):434, 2023.
Article in English | ProQuest Central | ID: covidwho-2252369

ABSTRACT

The photocatalytic degradation of the emerging contaminant paracetamol in aqueous solution has been studied under 1 SUN (~1000 W m−2) in the presence of four commercial TiO2 powders, namely sub-micrometric anatase and rutile, and nanometric brookite and P25 (the popular anatase/rutile mixture used as a benchmark in most papers). The rutile powder showed low activity, whereas, interestingly, the anatase and the brookite powders outperformed P25 in terms of total paracetamol conversion to carboxylic acids, which, according to the literature, are the final products of its degradation. To explain such results, the physicochemical properties of the powders were studied by applying a multi-technique approach. Among the physicochemical properties usually affecting the photocatalytic performance of TiO2, the presence of some surface impurities likely deriving from K3PO4 (used as crystallization agent) was found to significantly affect the percentage of paracetamol degradation obtained with the sub-micrometric anatase powder. To confirm the role of phosphate, a sample of anatase, obtained by a lab synthesis procedure and having a "clean” surface, was used as a control, though characterized by nanometric particles and higher surface area. The sample was less active than the commercial anatase, but it was more active after impregnation with K3PO4. Conversely, the presence of Cl at the surface of the rutile did not sizably affect the (overall poor) photocatalytic activity of the powder. The remarkable photocatalytic activity of the brookite nanometric powder was ascribed to a combination of several physicochemical properties, including its band structure and nanoparticles size.

20.
Chemosensors ; 11(2):152, 2023.
Article in English | ProQuest Central | ID: covidwho-2289018

ABSTRACT

Horseradish peroxidase (HRP) combined with its fluorescence substrates is attracting increasing attention for biochemical analysis. Amplex red is the most widely used fluorescence substrate to HRP;however, it suffers from some drawbacks, such as nonspecific responsiveness toward carboxylesterases. Discovering a new small molecular fluorescence substrate with improved sensitivity and selectivity for HRP is thus desired. Herein, three dihydrofluorescein derivatives (DCFHs) are presented to serve as HRP substrates through fluorescence turn-on methods. The most promising one, 2,7-dichloro-9-(2-(hydroxymethyl)phenyl)-9H-xanthene-3,6-diol (DCFH-1), exhibited excellent sensitivity in the detection of HRP. Moreover, DCFH-1 does not respond to carboxylesterase, thus holding advantages over Amplex red. In the further study, the detection reagent in the commercial ELISA kits was replaced with DCFH-1 to establish a new fluorescence ELISA, which works very well in the quantification of inflammatory cytokine biomarkers from in vitro models.

SELECTION OF CITATIONS
SEARCH DETAIL